Algal Turf Sediments and Sediment Production by Parrotfishes across the Continental Shelf of the Northern Great Barrier Reef
نویسندگان
چکیده
Sediments are found in the epilithic algal matrix (EAM) of all coral reefs and play important roles in ecological processes. Although we have some understanding of patterns of EAM sediments across individual reefs, our knowledge of patterns across broader spatial scales is limited. We used an underwater vacuum sampler to quantify patterns in two of the most ecologically relevant factors of EAM sediments across the Great Barrier Reef: total load and grain size distribution. We compare these patterns with rates of sediment production and reworking by parrotfishes to gain insights into the potential contribution of parrotfishes to EAM sediments. Inner-shelf reef EAMs had the highest sediment loads with a mean of 864.1 g m-2, compared to 126.8 g m-2 and 287.4 g m-2 on mid- and outer-shelf reefs, respectively. High sediment loads were expected on inner-shelf reefs due to their proximity to the mainland, however, terrigenous siliceous sediments only accounted for 13-24% of total mass. On inner-shelf reef crests parrotfishes would take three months to produce the equivalent mass of sediment found in the EAM. On the outer-shelf it would take just three days, suggesting that inner-shelf EAMs are characterised by low rates of sediment turnover. By contrast, on-reef sediment production by parrotfishes is high on outer-shelf crests. However, exposure to oceanic swells means that much of this production is likely to be lost. Hydrodynamic activity also appears to structure sediment patterns at within-reef scales, with coarser sediments (> 250 μm) typifying exposed reef crest EAMs, and finer sediments (< 250 μm) typifying sheltered back-reef EAMs. As both the load and grain size of EAM sediments mediate a number of important ecological processes on coral reefs, the observed sediment gradients are likely to play a key role in the structure and function of the associated coral reef communities.
منابع مشابه
Late Holocene island reef development on the inner zone of the northern Great Barrier Reef: Insights from Low Isles Reef
A sedimentological and stratigraphic study of Low Isles Reef off northern Queensland, Australia was carried out to improve understanding of factors that have governed Late Holocene carbonate deposition and reef development on the inner to middle shelf of the northern Great Barrier Reef. Low Isles Reef is one of 46 low wooded island-reefs unique to the northern Great Barrier Reef, which are situ...
متن کاملCyclone pumping, sediment partitioning and the development of the Great Barrier Reef shelf system: a review
The modern Great Barrier Reef (GBR) is part of the world’s largest and best known mixed terrigenous-carbonate continental margin. The GBR shelf contains three shore-parallel sedimentary belts: an inner shelf zone of terrigenous sedimentation at depths of 0–22m; a middle shelf zone of sediment starvation at depths of 22–40m; and an outer shelf reef tract with its inner edge at ca. 40m depth. The...
متن کاملEcological Consequences of Sediment on High-Energy Coral Reefs
Sediments are widely accepted as a threat to coral reefs but our understanding of their ecological impacts is limited. Evidence has suggested that benthic sediments bound within the epilithic algal matrix (EAM) suppress reef fish herbivory, a key ecological process maintaining reef resilience. An experimental combination of caging and sediment addition treatments were used to investigate the ef...
متن کاملCross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass
The Great Barrier Reef (GBR) is one of the most extensively studied coral reef systems in the world, yet to date, there has been no comprehensive multi-spatial scale evaluation of its benthic community structure. Such descriptions provide a useful reference point for evaluating future community changes. Moreover, large-scale associations between macroalgae and herbivory on the GBR are yet to be...
متن کاملSediment-mediated suppression of herbivory on coral reefs: Decreasing resilience to rising sea levels and climate change?
We describe a mechanistic basis for maintaining an alternative degraded stable state on coral reefs: sedimentladen algal turfs. Using remote underwater video cameras we quantified rates of herbivory by coral reef fishes on epilithic algal turfs with natural and experimentally reduced sediment loads. Removal of sediment increased overall fish feeding rates 3.8-fold, and resulted in a decrease in...
متن کامل